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ABSTRACT
A stabilized, nodally integrated linear tetrahedral is formu-

lated and analyzed. It is well known that linear tetrahedralele-
ments perform poorly in problems with plasticity, nearly incom-
pressible materials, and acute bending. For a variety of reasons,
linear tetrahedral elements are preferable to quadratic tetrahe-
dral elements in most nonlinear problems. Whereas, mixed meth-
ods work well for linear hexahedral elements, they don’t forlin-
ear tetrahedrals. On the other hand, automatic mesh genera-
tion is typically not feasible for building many 3D hexahedral
meshes. A stabilized, nodally integrated linear tetrahedral is de-
veloped and shown to perform very well in problems with plas-
ticity, nearly incompressible materials and acute bending. Fur-
thermore, the formulation is analytically and numericallyshown
to be stable and optimally convergent. The element is demon-
strated to perform well in several standard linear and nonlinear
benchmarks.

INTRODUCTION
1 A nodally integrated tetrahedral element was first formu-

lated in [1] and further analyzed in [2]. The element was shown
to perform well in several 2D bending problems but it was noted
that the formulation was prone to spurious low energy modes.In
this work, a stabilization of the nodally integrated tetrahedral is
proposed. It is then shown analytically that the proposed scheme
is stable and consistent for linear elasticity. As it turns out, the

1Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

nodal integration provides reduced constraints such that coarse
mesh accuracy can be achieved for nearly incompressible mate-
rials and plasticity. Finally, example problems demonstrate the
improved numerical response of the proposed tetrahedral formu-
lation.

FORMULATION
In what follows, superscript indices in lower case (typically

e) refer to element quantities and superscript indices in upper
case (typicallyI ) refer to nodal quantities. Here, the standard
weak form of linear elasticity is considered

a(u,w) = f (w) u,w∈ (H1(Ω))3 (1)

for the domainΩ ⊂ R
3. The discrete problem reads

ah(uh,wh) = f (wh) (2)

whereuh wh are the discrete trial and test functions respectively
based on linear tetrahedral interpolation and the discretebilinear
operatorah(uh,wh) is based on average nodal integration. The
displacement gradient on the domain of elemente (i.e. Ωe) will
be written∇ue

h = {∇uh : x∈ Ωe} and is observed to be constant
on Ωe. Furthermore, strains based on the trial and test functions
are respectively writtenεe = ∇sue

h andδεe = ∇swe where∇s is
the symmetric gradient. In order to present the average nodal

1



strain formulation, the setSI is defined to be the group of ele-
ments common to nodeI andNe andNn are respectively the total
number of elements and nodes defined onΩ. The average nodal
gradient∇uI and strainεI at nodeI are defined

∇uI
h =

1
V I

∑

e∈SI

Ve

4
∇ue

h

εI =
1
2
[∇uI

h +(∇uI
h)

T ] or εI =
1

V I

∑

e∈SI

Ve

4
εe (3)

whereVe = vol(Ωe) and the average nodal volume is given

V I =
∑

e∈SI

Ve

4
(4)

”Virtual” nodal strain quantities analogous to (3) based onthe
test functions are also defined

∇wI
h =

1
V I

∑

e∈SI

Ve

4
∇we

δεI =
1
2
[∇wI

h +(∇wI
h)

T ] or δεI =
1

V I

∑

e∈SI

Ve

4
δεe (5)

Considering the standard tetrahedral finite element discretization
for the equations of motion and applying the preceeding notation,
the bilinear form can be written as a sum over elementsor a sum
over nodes as follows

a(wh,uh) =

Ne
∑

e=1

Veδεe : Cεe (6)

=

Nn
∑

I=1

∑

e∈SI

Ve

4
δεe : Cεe (7)

where, again,SI is the set of elements that are common to nodeI
andC is the material stiffness.

The following modified, nodal strain definition of the bilin-
ear form is proposed

ah(wh,uh)=

Nn
∑

I=1

V I δεI :CεI +

Nn
∑

I=1

∑

e∈SI

αe,I Ve

4
(δεI −δεe) : C̃(εI −εe)

(8)
whereαe,I is a stabilization parameter that can potentially de-
pend on elemente and nodeI andC̃ could be an alternate ma-
terial stiffness. Of courseC = C̃ would be the natural choice

but given a nearly incompressible material with Poisson’s ration
ν = 0.4999, better results may be obtained by letting Poisson’s
ratio beν = 0.4 in C̃. The average nodal strain formulation pro-
posed in [1] and analyzed in [2] is recovered whenαe,I = 0. In
fact, results from aforementioned references are quite good de-
spite the absence of the stabilization term. Nonetheless, the eige-
nalysis in the RESULTS Section demonstrate the necessity ofthe
stabilization term.

STABILITY
The strain energy energy from (8) is written

ah(uh,uh)=
1
2

Nn
∑

I=1

V I εI :CεI +
1
2

Nn
∑

I=1

∑

e∈SI

αe,I Ve

4
(εI −εe) : C̃(εI −εe)

(9)
With αe,I = 0, a spurious zero energy mode can arise in the event
of an infinite domain with a regular lattice of points where the
displacement oscillates such that strainsεe are positive to the left
of every node and negative to the right of every node thus pro-
ducing an average strainεI = 0 at every node and thus a zero
energy mode. For a finite domain, the zero energy mode can-
not propagate since the nodes on the boundaries have strain con-
tributions from only one side thus precluding the zero energy
mode. Nonetheless, the energy of this above described mode can
be very small and stability in theH1 norm is not ensured. With
the stabilization, the energy in (9) reduces to the following when
εI = 0

ah(uh,uh) =
1
2

Nn
∑

I=1

∑

e∈SI

αe,I Ve

4
εe : Cεe (10)

From Korn’s lemma (10) is always non zero for any displacement
field modulo rigid body modes such that

ah(uh,uh) ≥ α‖uh‖2
1 (11)

whereα is a mesh independent constant. Consequently, the form
(9) has no spurious zero energy modes and is thusV coercive. In
the event thatαe,I = 0, the discrete bilinear form may be greater
than zero for non-trivial displacements butα in (11) will depend
onh precluding it from the following convergence analysis.

CONVERGENCE
In this section, optimal convergence in theH1 (energy norm) is
proved analytically for the proposed discrete bilinear form in (8).
Repeated indices will imply summation unless otherwise speci-
fied and the following notation will be used throughout for norms
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and semi-norms

‖y‖1 =

(∫

Ω
(yiyi +yi, jyi, j)dΩ

)1/2

|y|1 =

(∫

Ω
yi, jyi, j dΩ

)1/2

(12)

and the Frobenius norms will be used for matrices where for ex-
ample

y = Rm,n ‖y‖ = (yi j yi j )
1/2 i = 1 : m, j = 1 : n

Strang’s first Lemma is defined

‖u−uh‖1 ≤C inf
vh∈Vh

[‖u−vh‖1 + sup
wh∈Vh

a(vh,wh)−ah(vh,wh)

‖wh‖1
]

(13)
whereu is the exact solution to the boundary value problem and
uh is the solution to the approximate weak formah(wh,uh) =
f (wh) Because (8) is coercive (i.e. stable) (13) can be used to
establish its rate of convergence. From hereon, let

vh = Πhu (14)

be the interpolant ofu thus from approximation theory [3]‖u−
vh‖1 ≤Ch. Hence, it will suffice to show that

sup
wh∈Vh

a(vh,wh)−ah(vh,wh)

‖wh‖1
< Ch (15)

Exploiting the symmetries of the elasticity tensorC the exact bi-
linear form (7) can be written in terms of the gradients

a(wh,vh) =

Nn
∑

I=1

∑

e∈SI

Ve

4
∇we : C∇ve (16)

Furthermore, the modified bilinear form (8) can be rewritten

ah(wh,vh) = an
h(wh,vh)+as

h(wh,vh) (17)

where

an
h(wh,vh) =

Nn
∑

I=1

∑

e∈SI

Ve

4
∇we : C∇vI

h (18)

as
h(wh,vh) =

Nn
∑

I=1

∑

e∈SI

αe,I Ve

4
(∇wI −∇we) : C̃(∇vI −∇ve) (19)

and where (5) was used to eliminateδεI in (18). Our first task is
to show that

sup
wh∈Vh

a(vh,wh)−an
h(vh,wh)

‖wh‖1
< Ch (20)

Equations (16) and (18) provide the following difference

a(vh,wh)−an
h(vh,wh) =

Nn
∑

I=1

∑

e∈SI

Ve

4
∇we : C(∇ve−∇vI

h) (21)

and by Cauchy Schwarz, the following inequality can be estab-
lished

a(vh,wh)−an
h(vh,wh) ≤ M

Nn
∑

I=1

∑

e∈SI

Ve

4
‖∇we‖‖∇ve−∇vI

h‖

(22)
where‖ · ‖ is the norm‖∇v‖ = (vi, jvi, j)

1/2 as per (12) andM is
the norm of the elasticity tensorM = (Ci jklCi jkl )

1/2. In order to
bound‖∇ve−∇vI

h‖ in (22), it is required that the exact solutionu
is sufficiently smooth (u∈C2) such that following Taylor series
expansion can be made about pointxe

∇u(x) = ∇u(xe)+∇2u(xe∗)(x−xe) (23)

where xe is the coordinates for the centroid of the elemente
and xe∗ ∈ Ωe. For a 3D tetrahedrale, xe corresponds toξ =
(1/3,1/3,1/3) in the parent coordinates of the tetrahedral. Next,
the following difference is computed using (3) and (4)

∇ve−∇vI = ∇ve−∇u(xI )− 1
V I

∑

ē∈SI

V ē

4
(∇vē−∇u(xI )) (24)

wherexI is the coordinates of nodeI . Expanding∇u(xI ) in terms
of (23) and substituting into (24) yields

∇ve−∇vI = ∇ve−∇u(xe)−∇2u(xe∗)(xI −xe)

− 1
V I

∑

ē∈SI

V ē

4
(∇vē−∇u(xē))+

∑

ē∈SI

V ē

4
(∇2u(xē∗)(xI −xē) (25)

Taking the norm of the left and right sides of (25) and applying
the triangle inequality yields the inequality

‖∇ve−∇vI‖ ≤ ‖∇ve−∇u(xe)‖+‖∇2u(xe∗)‖h

+
1

V I

∑

ē∈SI

V ē

4
‖(∇vē−∇u(xē))‖+

1
V I

∑

ē∈SI

V ē

4
‖∇2u(xē∗)‖h (26)
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whereh is the maximum element diameter and thus‖xI −xe‖≤ h
for all e. It turns out to be most convenient to bound (26) by the
L∞ norm; consequently, for some vectoru∈ R

3

|u|2,∞,Ωe = max
i jk

sup
x∈Ωe

∣

∣

∣

∣

∂2ui

∂x j∂xk

∣

∣

∣

∣

(27)

Based on (14)and approximation theory [3,4], the followingerror
bound is exploited

∣

∣

∣

∣

∂ui

∂x j
(x)− ∂vi

∂x j

∣

∣

∣

∣

x∈Ωe
≤Ch|u|2,∞,Ωe ∀ i = 1 : 3 (28)

Using (3) and substituting

‖∇2u(xe)‖ =





∑

i jk

(

∂2ui

∂x j∂xk
(xe)

)2




1/2

≤ 3
√

3|u|2,∞,Ωe (29)

and (28) into (26) yields

‖∇ve−∇vI‖ ≤ (Ce+3
√

3)h|u|2,∞,Ωe

+
1

V I

∑

ē∈SI

V ē

4
(Cē+3

√
3)h|u|2,∞,Ωē

≤Ch|u|2,∞,Ω (30)

since |u|2,∞,Ω| ≥ |u|2,∞,Ωe ∀e. Substituting the result (30) into
(22) and applying the Cauchy Schwartz inequality yields

Nn
∑

I=1

∑

e∈SI

Ve

4
‖∇we‖‖∇ve−∇vI‖ ≤





Nn
∑

I=1

∑

e∈SI

Ve

4
‖we‖2





1/2

×





Nn
∑

I=1

∑

e∈SI

Ve

4
Ch2 |u|22,∞,Ω





1/2

≤
(

Ne
∑

e=1

Ve‖we‖2

)1/2( Ne
∑

e=1

VeCh2 |u|22,∞,Ω

)1/2

≤ C|wh|1,Ω |u|2,∞,ΩV h
(31)

where summations over nodesI and setsSI were reorganized
as summations over elementse as in (7). and the semi-norm is
computed

|wh|1,Ω =

(

Ne
∑

e=1

Ve‖∇we‖2

)1/2

(32)

since the∇we is constant onΩe. The desired bound in (20) is a
consequence of (31).

The next task is to show that

sup
wh∈Vh

as
h(vh,wh)

‖wh‖1
< Ch (33)

Applying the results from (30),(31) and the Cauchy Schwarz and
triangle inequalities to (19) provides the following bound

as
h(wh,vh) ≤ M

Nn
∑

I=1

∑

e∈SI

αe,I Ve

4
‖∇wI −∇we‖‖∇ve−∇vI‖

≤ α̂M
Nn
∑

I=1

∑

e∈SI

Ve

4
(‖∇wI‖+‖∇we‖)‖∇ve−∇vI‖

≤ α̂M
Nn
∑

I=1

∑

e∈SI

Ve

4
‖∇wI‖(C1 |u|2,∞,Ω h)+ α̂MC2|w|1,Ω |u|2,∞,ΩV h

(34)

whereα̂ = maxe,I αe,I . At this point it remains to bound the re-
maining summation from the last inequality in (34). Using the
definition for nodal volume (4) and nodal strain (3) gives

Nn
∑

I=1

∑

e∈SI

Ve

4
‖∇wI‖ ≤

Nn
∑

I=1

∑

e∈SI

Ve

4
‖ 1

V I

∑

ê∈SI

V ê

4
∇wê‖

≤
Nn
∑

I=1

∑

e∈SI

Ve

4V I

∑

ê∈SI

V ê

4
‖∇wê‖

≤
Nn
∑

I=1

∑

ê∈SI

V ê

4
‖∇wê‖

≤





Nn
∑

I=1

∑

ê∈SI

V ê

4
‖∇wê‖2





1/2



Nn
∑

I=1

∑

ê∈SI

V ê

4





1/2

≤ |wh|1,ΩV (35)

The desired bound in (33) is a arrived at by substituting the result
of (35) into (34). Substitution of (20) and (33) into (13) provides
the final result

‖u−uh‖1 ≤Ch (36)

provided sufficient smoothness of the exact solutionu ∈ C2 ∩
(H1)3.
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Table 1. EIGENFREQUENCIES FROM TET AND HEX MESHES

Modes α = 0.05 α = 0 hex

Mode 1 0.258 0.209 0.258

Mode 10 0.424 0.236 0.404

Mode 16 0.452 0.248 0.482

Figure 1. FIRST EIGENMODE: α = 0.05 (LEFT) AND α = 0 (RIGHT)

RESULTS
The following example problems demonstrate the necessity

of the stabilization added to the nodal integration scheme and the
good convergence characteristics of the proposed approach. A
uniform stabilization parameter was employed throughout such
thatαe,I = α with α = 0.05

Eigenanalysis
An eigenanalysis reveals the spurious modes of the nodal in-

tegration approach (i.e.α = 0). The eigenvalues and first eigen-
mode of a 1x1x1 block with ρ = 1, E = 1 andν = 0.499 are
shown in Table 1 and Fig. 1 respectively. The eigenfreqencies
are compared to a mesh composed of 512 incompatible modes
hexahedral elements. Withα = 0, the spurious modes are not
zero energy modes since the method is still stable in theL2 norm
but not theH1 norm. On the other hand, it is seen that further
mesh refinement yields convergence to the wrong eigenfrequen-
cies withα = 0. Whereas, the stabilized formulation converges
to the correct eigenfrequencies.

Asymptotic Error
A standard benchmark is a cantilever beamν = 0.499 loaded

in shear as described in [5]. The energy of the discretization error
is plotted in Fig. 2 for the standard linear triangle elementand the
nodally integrated triangle withα = 0.05. The nodally integrated

-3.5

-3

-2.5

-2

-1.5

-1

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

linear
nodal (0.05)

lo
g(

e
)

log( h)

1

1

Figure 2. DISCRETIZATION ERROR FOR CANTILEVER BEAM

element actually converges at a rate of 1.2 and is clearly superior
to the linear triangle.

Plasticity
The Cook membrane Fig. 3 (see [6] for dimensions) with

Von Mises plasticity (E = 70, ν = 0.333,σy = 0.243 and a lin-
ear hardening modulusEt = 0.15) is considered. Meshes with
n= 8,16,32,64 elements along the edges are considered and Fig.
3 shows the plastic strain for then = 16 case. The stabilization
stiffnessC̃ (8) was chosen as follows: ˜µ = αEt/(2(1+ ν)) and
λ̃ = αλ whereλ = E/((1+ ν)(1−2ν)) with α = 0.05. The tip
displacement versusn is shown plotted in Fig. 4 for the nodally
integrated triangle, linear triangle and the QM6 incompatible
modes quadrilateral. The linear tetrahedral is very stiff whereas
the nodally integrated triangle performs as well or better than the
incompatible modes quadrilateral.

DISCUSSION
A stabilized nodally integrated tetrahedral element formula-

tion was developed. It was shown analytically and numerically
that the proposed formulation was stable and optimally conver-
gent. Although the element is not shown to be LBB stable, it per-
forms well in some cases where nearly incompressible or plastic
material were used. More studies will be done for more general
material cases such as nonlinear hardening and large deforma-
tions.
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Plastic strain
3.6

0.0

0.18

Figure 3. COOK MEMBRANE: EFFECTIVE PLASTIC STRAIN n = 16
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